7 Jika P = {bilangan prima kurang dari 12} dan Q = {bilangan asli kurang dari 12}, pernyataan berikut yang benar adalah A. 9 βˆ‰ P dan P βŠ„ Q B. 5 βˆ‰ P dan P βŠ‚ Q C. 9 ∈ P dan P βŠ„ Q D. 5 ∈ P dan P βŠ‚ Q (Soal No. 7 PG Bab Himpunan BSE Kurikulum 2013 (Revisi 2016) Semester 1 Kelas 7, Kemendikbud) Soal dan Kunci Jawaban PAS Matematika SMP Kelas 7 Kurikulum 2013 Tahun Pelajaran 2019/2020 – Soal Penilaian Akhir Semester PAS sangat berarti bagi bapak dan ibu guru untuk dijadikan referensi pada saat Penilaian Akhir Semester tahun berikutnya. Pada kesempatan ini kami akan berbagi soal, dan kunci jawaban PAS Matematika SMP Kelas 7 semester ganjil kurikulum 2013 Tahun Pelajaran 2019/2020, serta dilengkapi dengan kisi-kisi penulisan soalnya. Berikut Soal dan Kunci Jawaban Penilaian Akhir Semester PAS Matematika SMP Kelas 7 Kurikulum 2013 Tahun Pelajaran 2019/2020 I. Pilihlah salah satu jawaban dari A, B, C, atau D yang paling benar! 1. Urutan bilangan 8, -9, -7, 5, 3 dari yang terbesar adalah..... A. -9, -7, 8, 5, 3 B. 8, 5, 3, -7, -9 C. -9, 8, -7, 5, 3 D. -9, -7, 3, 5, 8 2. Jika n bilanganbulat negatif, berikut ini yang menunjukan bilangan terbesar adalah.... A. 2+n B. 2Γ—n C. 2-n D. 2Γ·n 3. Suhu didalam kulkas sebelum dihidupkan 27ο‚°C, setelah dihidupkan selama 5 jam suhunya menjadi –7ο‚°C. Perbedaan suhu dalam kulkas sebelum dan setelah dihidupkan adalah.... A. – 34ο‚°C B. – 16ο‚°C C. 16ο‚°C D. 34ο‚°C 4. Berikut ini pernyataan yang benar tentang sifat distributif pada perkalian adalah.... A. a b + c = ac + bc B. a b + c = cb + ca C. a b + c = ba +bc D. a b + c = ab + ac 5. Hasil dari -14Γ—5-25 adalah.... A. – 45 B. – 35 C. – 70 D. – 95 6. Seekor ikan berada pada kedalaman 600 meter dibawah permukaan laut. Ikan itu berenang sejauh 125 meter menuju permukaan laut, posisi ikan itu sekarang berada…. A. 725 m dibawah permukaan laut B. 475 m dibawah permukaan laut C. 725 m diatas dasar laut D. 475 m diatas dasar laut 3/5,1/2,3/4, jika disusun dalam urutan turun adalah …. A. 3/5,1/2,3/4 B. 1/2,3/5,3/4 C. 3/4,3/5,1/2 D. 1/2,3/4,3/5 8. Diantara bilangan berikut, yang merupakan bilangan terkecil adalah... A. 0,2 B. 0,21 C. 0,23 D. 0,12 9. Rendi mengambil jeruk dari dalam sebuah keranjang sebanyak 2/3 bagian, maka sisa jeruk dalam keranjang adalah.... bagian A. 1/3 B. 1 1/3 C. 2/3 D. 2 2/3 10. Ibu memiliki tali yang panjangnya 30 m. Jika tali tersebut dipotong-potong dengan panjang masing-masing 1/5 m, maka banyaknya potongan tali yang diperoleh adalah..... A. 5 B. 6 C. 15 D. 150 11. Hasil dari 2^4+3^2 -2^3= …… A. 8 B. 11 C. 17 D. 32 12. Hasil dari 27 24 = .... A. 5 B. 6 C. 7 D. 8 13. Diantara kelompok - kelompok berikut yang merupakan himpunan adalah .... A. Kelompok gunung yang tinggi B. Kelompok makanan yang enak C. Kelompok hewan berkaki dua D. Kelompok siswa yang pandai 14. P adalah himpunan bilangan bulat antara -2 dan 3. Pernyataan berikut yang benar adalah ..... A. 1 ∈ P B. 2 βˆ‰ P C. 0 βˆ‰ P D. -2 ∈ P 15. Diketahui A= {2,3,5,7,11,13}, Himpunan A jika dinyatakan dengan kata-kata adalah ...... A. {bilangan asli yang lebih dari 1 dan kurang dari 14} B. {bilangan prima yang lebih dari 2 dan kurang dari 15} C. {bilangan ganjil yang lebih dari 1 dan kurang dari 14} D. {enam bilangan prima yang pertama} 16. Himpunan berikut yang merupakan himpunan kosong adalah …. A. Himpunan bilangan prima antara 7 dan 10 B. Himpunan bilangan cacah kurang dari 1 C. Himpunan bilangan prima habis dibagi 3 d. Himpunan bilangan bulat antara 7 dan 9 17. B adalah himpunan bilangan prima kurang dari 25, banyaknya anggota himpunan B adalah…. A. 8 B. 9 C. 10 D. 19 18. Diketahui Himpunan A= {π‘₯ 2 <π‘₯ ≀ 12, π‘₯ ∈ π‘π‘–π‘™π‘Žπ‘›π‘”π‘Žπ‘› π‘”π‘’π‘›π‘Žπ‘}. Banyaknya himpunan bagian A adalah .... A. 8 B. 16 C. 32 D. 648 19. Diketahui himpunan K={x 1 < π‘₯ ≀ 11, π‘₯ π‘π‘–π‘™π‘Žπ‘›π‘”π‘Žπ‘› π‘”π‘Žπ‘›π‘—π‘–π‘™}. Banyak himpunan bagian dari himpunan K yang mempunyai 3 anggota adalah ... . A. 4 B. 10 C. 20 D. 35 20. Jika S = {bilangan cacah kurang dari 10} P = {bilangan asli kurang dari 5} dan Q = {5, 6, 7} Maka komplemen himpunan P adalah.... A. {0, 5, 6, 7, 8, 9} B. {0,5, 6, 7} C. { } D. {0, 1,2,3,4,5,6,7,8, 9} 21. Diketahui P = {x 2 ≀ x ≀ 7, x bilangan prima} dan Q ={Faktor dari 6} Maka pernyataan yang benar adalah…. A. P∩Q={2,3,6} B. PβˆͺQ={2,3,5,6,7} C. P-Q={2,3,5} D. Q-P = {1,6} 22. Yang merupakan anggota dari AβˆͺB pada diagram venn di bawah ini adalah.... A. A βˆͺ B = { 2, 3, 5, 6, 7 } B. A βˆͺ B = { 1, 2, 3, 5, 6, 7 } C. A βˆͺ B = { 1, 2, 3, 4, 5, 7, } D. A βˆͺ B = { 1, 2, 3, 4, 5, 6, 7, 8, 9 } 23. Penderita demam berdarah maupun muntaber yang dirawat di sebuah rumah sakit sebanyak 86 orang. 35 orang penderita demam berdarah saja dan 15 orang penderita kedua-duanya. Banyak penderita muntaber saja adalah .... A. 20 orang B. 36 orang C. 50 orang D. 51 orang 24. Diketahui bentuk aljabar -3x2 + 6y + 2, Jumlah dari koefisien-koefisien dari bentuk aljabat tersebut adalah ....... A. 3 B. 5 C. 9 D. 11 25. Pasangan suku sejenis berikut yang benar adalah…. A. y2 dan 2y B. x3 dan x2 C. 5x2y dan 3xy2 D. 2x2y dan – 3x2y 26. Bentuk sederhana dari bentuk aljabar 4x – 8x + 12 adalah ...... A. 4x + 12 B. -4x + 12 C. 12x + 12 D. -12x + 12 27. Hasil dari 2x – 2 x + 5 adalah.... A. 2x2 – 12x – 10 B. 2x2 + 12x – 10 C. 2x2 + 8x – 10 D. 2x2 – 8x – 10 28. Bentuk sederhana dari γ€–9xγ€—^4 y^2/γ€–3xγ€—^2 y^ = .... A. 3x2y B. 3xy/y C. 3x^2 y/y^2 D. 3/y 29. Nilai a yang memenuhi 4 – a = 12 adalah ..... A. – 16 B. – 8 C. 8 D. 16 30. Penyelesaian dari 5y + 7 = 3y – 9 adalah.... A. y = 8 B. y = 2 C. y = –8 D. y = –2 31. Pengurangan 35 dari jumlah x dan y adalah 52. Kalimat tersebut jika dinyatakan dalam kalimat matematika adalah .... A. 25 – x + y = 52 B. 5 + x – y = 52 C. 35 – x + y = 52 D. x + y – 35 = 52 32. Jika sebuah bilangan asli dikali 3 kemudian ditambah 9, hasilnya sama dengan 48. Bilangan yang dimaksud adalah ... A. 12 B. 13 C. 14 D. 15 33. Iwan berkata bahwa nilai matematikanya antara 70 dan 85. Jika nilai matematika Iwan adalah x, maka kalimat matematika yang sesuai adalah .... A. x ο‚£ 70 atau x β‰₯ 85 B. 70 ο‚£ x ο‚£ 85 C. 70 ο€Ό x < 85 D. x ο‚£ 85 34. Himpunan penyelesaian dari 2a – 1 < 7 dengan a οƒŽ {bilangan asli} adalah.... A. {0,1,2,3, 4} B. {0,1,2, 3} C. {1,2,3, 4} D. {1,2,3 } 35. Himpunan Penyelesaian dari 5p – 5 ο‚£ 2p + 7 , x οƒŽ Q adalah .... A. {pβ”‚pβ‰₯4,p∈Q} B. {pβ”‚p≀4,p∈Q} C. {pβ”‚pβ‰₯-4,p∈Q} D. {pβ”‚pβ‰₯-4,p∈Q} II. U R A I A N 36. Dalam kompetisi matematika, setiap jawaban yang benar diberi nilai 5, salah diberi nilai –1, dan yang tidak dijawab diberi nilai 0. Dari 40 soal yang diberikan, Rina berhasil menjawab benar 28 soal dan salah 6. Tentukan total skor yang di peroleh Rina! 37. Dalam suatu kelompok terdapat 17 orang gemar menonton sepak bola, 19 orang gemar menonton basket, dan 5 orang gemar keduanya. Tentukan a. Diagram venn-nya. b. Banyaknya orang dalam kelompok tersebut. 38. Tentukan hasil pengurangan 3a – 5 dari 5a – 4 ! 39. Tentukan anggota himpunan penyelesaian dari –1 – 2x < x –10, dengan x οƒŽ bilangan asli! 40. Harga sepasang sepatu sama dengan dua kali harga sepasang sandal. Pa Agus membeli 2 pasang sepatu dan 3 pasang sandal dan membayar dengan harga Rp. Tentukan harga sepasang sepatu tersebut! Bagi bapak dan ibu guru yang membutuhkan soal PAS Matematika Kelas 7 Kurikulum 2013 tahun pelajaran 2019/2020 silakan Kunci Jawaban PAS Matematika Kelas 7 Kurikulum 2013 Tahun Pelajaran 2019/2020 silakan Kisi-kisi Soal PAS Matematika Kelas 7 Kurikulum 2013 Tahun Pelajaran 2019/2020 silakan Courtesy MGMP Matematika SMP Kab. Indramayu Sektor 4 dan Sektor 5 Contohnyajika bilangan ganjil bersifat positif adalah: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, dan seterusnya. 3. Bilangan Prima Kemudian ada bilangan prima, yang merupakan angka asli yang hanya habis dibagi satu atau habis dibagi dengan angka itu sendiri. Misalnya, angka 2 hanya habis jika dibagi dengan angka 1 dan angka 2 itu sendiri.
MatematikaALJABAR Kelas 7 SMPHIMPUNANOperasi HimpunanDiketahui A = {bilangan asli kurang dari 20} B = {bilangan asli genap kurang dari 15} C = {bilangan asli ganjil kurang dari 10} D = {bilangan asli lebih dari 7 dan kurang dari 15} a. Tentukan anggota dari himpunan A, B, C, dan D b. Tentukan anggota dari B n C, B n D; dan C n D c. Gambarlah diagram Venn-nyaOperasi HimpunanDiagram VennHIMPUNANALJABARMatematikaRekomendasi video solusi lainnya0115Diketahui S = {1, 2, 3, 10} dan A = {x faktor dari 12, x...0332Dari 40 orang anak, 16 anak memelihara burung, 21anak mem...0041Diketahui A={2,3,4} dan B={1,3}, maka A⋃B adalah ... a...Teks videoHalo kamu fans disini kita punya soal tentang himpunan diketahui ada 4 himpunan yaitu himpunan a b c dan d kita diminta untuk menentukan anggota dari himpunan a b c dan d dari irisan himpunan berikut dan juga menggambarkan diagram hanya kita mulai dari soal a terlebih dahulu di sini kita akan menuliskan untuk semua anggota dari masing-masing himpunan berarti kita kan Nyatakan saja disini kita mulai dari himpunan a adalah himpunan bilangan asli kurang dari 20 dan a. Bilangan asli adalah bilangan bulat yang dimulai dari 12 dan seterusnya berarti bahwa anggota dari himpunan a adalah 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 dan juga 19 perhatikan bahwa 20 ini tidak ikut serta karena harus kurang dari 2 Jadi tidak boleh = 20 untuk himpunan b kita dapat Tuliskan juga untuk anggotanya adalah bilangan asli genap yang kurang dari 15 dari kita mulai dari 2 bilangan genap berikutnya adalah 4. Kalau kita punya disini 6 8 10 12 dan yang terakhir adalah 14. Jadi kita berhenti hingga bilangan asli yang kurang dari 15 dan harus genap hal untuk yang himpunan saya kita juga dapat Nyatakan disini untuk masing-masing anggotanya bilangan asli ganjil kurang dari 10 berarti kita mulai dari 1 3 5 dan juga 9 karena disini untuk 11 sudah melebihi 10 jadi tidak jadi kita berhenti sampai di 9 untuk yang kita punya ini adalah bilangan asli yang lebih dari 7 namun kurang dari 15 berarti kita bunga di sini mulai dari 8 jadi perlu diperhatikan bahwa tujuannya ini tidak ikut karena harus lebih dari 7 yang kita punya 8 9 10 11 12 13 dan juga 14 perhatikan bahwa 15 dia ikut karena di sini harus kurang dari 15 berikutnya untuk soal yang baik kita diminta untuk menentukan anggota dari B irisan c. D dan d. + e irisan D perlu diperhatikan bahwa untuk B irisan C berarti ini maknanya adalah himpunan dimana isi anggotanya adalah x dengan syarat x a ini merupakan anggota dari himpunan b dan juga sekaligus X ini merupakan anggota dari Himpunan c. Jadi harus terdapat di dua himpunan tersebut Jadi jika kita Tuliskan berarti di sini kita punya untuk anggota dari himpunan P dan himpunan yang sama berat yang terletak di dua himpunan yang kita perhatikan Di sini ternyata tidak ada karena untuk himpunan b. Di sini bilangan asli genap 8 bulan saya disini berisikan bilangan asli ganjil Tentu saja tidak ada anggota yang terletak pada himpunan b dan himpunan sekaligus berarti di sini adalah himpunan kosong Jadi kita dapat Tuliskan seperti ini. Himpunan b irisan dengan himpunan D maknanya adalah himpunan yang anggotanya adalah x y dengan syarat X yang ini merupakan anggota dari himpunan b. Sekaligus juga harus merupakan anggota dari himpunan b. Maka cerita perhatikan seni untuk anggota dari himpunan b yang ada juga pada himpunan D berarti ini ada 8 berita lingkari lalu kita lihat lagi ada 10 Kalau kita punya ada 12 dan juga ada 14 sehingga disini untuk B irisan b merupakan himpunan yang anggotanya 80 lalu kita punya 12 dan juga 14 jadi kita punya seperti ini Dan untuk c diiris dengan D batin adalah himpunan dari X dengan syarat X yakni merupakan anggota dari C sekaligus juga merupakan anggota dari P jadinya kita perhatikan seni anggota dari himpunan yang juga terletak pada himpunan D Berarti ada hanya 9 berarti di sini kita dapati bahwa untuk Si Sandi yang gua tanya hanya satu yaitu 9 jadi kita dapati untuk soal yang beda seperti ini berikut contoh soal yang sesuai untuk menggambarkan diagram Venn kamu ceritakan pengalaman terlebih dahulu jadi di sini tadi kan bawa untuk menggambarkan diagram Venn putar. Apa buat kotak terdahulu seperti ini pertama kita akan menentukan untuk himpunan semestanya dimana himpunan semesta himpunan yang paling luas yaitu memuat semua objek yang sedang kita bicarakan dalam kasus ini kita perhatikan untuk himpunan a b c dan d yang paling luas adalah himpunan a. Dimana Ibu Nana di sini sudah mencakup semua anggota dari Maupun di berarti kita dapat gunakan sebagai himpunan semestanya. Jadi kita gak dapat Gambarkan seperti ini lalu berikutnya kita perhatikan untuk himpunan b c dan d. Masing-masing Di sini ternyata yang mempunyai irisan hanyalah b dengan b dan c dengan D Sedangkan untuk B dengan c tidak ada atau dengan kata lain yang merupakan himpunan kosong yang berarti kita dapat Gambarkan seperti ini jadi kita perhatikan di sini kan ini himpunan b himpunan D Himpunan c. Perhatikan bahwa tidak ada area dimana himpunan b dan himpunan segini saling beririsan karena memang tidak ada irisannya berarti di sini kita dapat digambarkan seperti ini dan juga kita taruh di tangan karena D ini berisikan dengan himpunan b maupun jadinya di sini kita mulai terlebih dahulu yang perlu kita isi adalah bagian irisannya supaya lebih mudah jadi perhatikan irisan dengan Dek di sini anggotanya ada 1 yaitu 9. Jadi kita taruh 9 ini yaitu diantara daerah irisan b dengan C kalau ketikan untuk B irisan D kita punya ada 8 kalau kita punya di sini ada 10 ada 12 dan juga di sini ada 14 jadi kita taruh seperti ini Kamu sekarang barulah kita isi mulai dari c, d dan juga B kita perhatikan di sini karena 9 sudah kita taruh tadi berat yang belum kita taruh adalah 1 hingga 7 jadi kita ni 13 + ni 5 dan juga 7 sekarang untuk yang himpunan D perhatikan bahwa kita sudah taruh 8 kalau di sini ada 90 12-14 yang belum kita taruh di sini adalah 11 dan juga 13. Jadi kita harus seperti ini lalu untuk himpunan b. Perhatikan bahwa kita sudah taruh untuk 8 10 12 14 yang belum kita tahu adalah 24 Kali di sini kita punya 6 Sekarang kita akan taruh untuk anggota dari himpunan a yang belum kita Tuliskan jadi kita kan taruh di pinggir-pinggirnya jadi di luar dari lingkaran himpunan b c maupun D jadi kita lihat saja anggota yang tidak termasuk himpunan b maupun C maupun D jadi kita perhatikan satu ini sudah jadi kita akan mencari lalu di sini gua sudah kalau 3 sudah 4 sudah 15 sudah kita punya 6 juga sudah tuh juga sudah tahu 83 sudah 9 sudah kalau kita punya 10 juga sudah 11 sudah 12 sudah 13 di sini sudah 14 sudah mulai dari 15 hingga 19 ini yang belum berarti kita taruh di sini bebas kita bisa taruh di sini 15 hari ini kita punya 16-17 bisa juga kita taruh di sisi kanan kita punya 18 dan juga 1945 kita mendapati bahwa diagram Venn nya seperti ini sampai jumpa di soal berikutnya
Bilanganprima ialah bilangan asli yang lebih dari 1, dengan faktor pembaginya adalah 1 dan bilangan itu sendiri. 2 = 1 x 2 3 = 1 x 3 5 = 1 x 5 7 = 1 x 7 11 = 1 x 11 dst.. Contoh : (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, .) Jika selain contoh di atas, maka bilangan itu dinamakan bilangan komposit. E. Bilangan Real / Riil
ο»Ώ- Matematika menjadi salah satu bidang keilmuan yang eksistensinya tidak dapat kita pisahkan dengan kehidupan kita. Tentu kalian juga mengetahui bilangan, tapi apakah kamu tahu apa itu bilangan asli? Dalam matematika dasar ada sebuah konsep yang digunakan dalam pengukuran maupun pencacahan, konsep tersebut kita kenal dengan istilah bilangan. Bilangan merupakan suatu konsep yang memberikan nilai jumlah terhadap segala sesuatu yang dihitung. Bagaimana dengan pengertian bilangan asli? Simak ulasannya di bawah ini. Bilangan sendiri terbagi menjadi beberapa macam; Bilangan NolBilangan ini merupakan bilangan yang berarti kosong atau tidak ada objek apapun yang dilambangkan dengan angka BulatBilangan bulat merupakan bilangan yang terdiri atas bilangan positif, negative, dan bilangan AsliBilangan asli sering disebut sebagai bilangan bulat CacahBilangan cacah merupakan gabungan bilangan nol dan bilangan PrimaBilangan prima merupakan bilangan bulat positif yang lebih besar dari satu dan hanya habis dibagi satu dan dirinya sendiri. Bilangan PecahanBilangan pecahan digambarkan oleh dua bilangan bulat yang dipisahkan oleh garis RasionalBilangan rasional merupakan bilangan yang dapat ditulis sebagai pecahan bilangan bulat dibagi bilangan bulat lainnya.Bilangan IrasionalSedangkan bilangan irasional merupakan kebalikan dari bilangan rasional, yaitu bilangan yang tidak bisa ditulis sebagai dalam tulisan ini akan membahas mengenai bilangan asli lebih lanjut. Baca Juga Soal PAS Tema 8 Praja Muda Karana Pramuka Kelas 3 SD Kurikulum 2013 Sejarah Bilangan Asli Seperti yang sudah dijelaskan di atas bahwa bilangan asli adalah dasar dari segala jenis perhitungan yang dimulai dengan angka 1, perhitungan menggunakan bilangan asli sudah dilakukan oleh warga Babilonia dalam mengembangkan sistem dengan basis posisi 1 hingga 10. Diperkirakan orang Mesir Kuno juga memiliki sistem bilangan dengan hieroglif berbeda untuk angka 1,10, dan semua pangkat 10 sampai pada 1 juta. Pada abad ke-19 dikembangkan definisi baru yakni bilangan asli menggunakan teori himpunan. Di dalam teori ini menganggap nilai 0 sebagai bilangan asli dan sekarang menjadi pelajaran konvensi dalam bidang teori himpunan, logika, dan ilmu komputer. Namun, beberapa matematikawan memiliki pandangan yang berbeda dengan bertahan pada tradisi lama dan tetap menjadikan angka 1 sebagai bilangan asli pertama. Pengertian Bilangan Asli Baca Juga Soal PAS Tema 5 Cuaca Kelas 3 SD Semester 2 Kurikulum 2013 Bilangan asli adalah bilangan yang dimulai dari angka 1 dan terus bertambah 1 atau himpunan bilangan bulat positif yang tidak termasuk 0. Di dalam himpunan bilangan bulat positif yaitu angka 0,1,2,3…. Maka yang termasuk ke dalam anggota bilangan asli yakni 1,2,3,4,…
Kuranglebih seperti ini intinya: Katakanlah m=akar kuadrat dari n kemudian mΓ—m=n. Sekarang, jika n bukan bilangan prima maka n dapat ditulis n= aΓ—b, berarti mΓ—m = aΓ—b. Perhatikan bahwa m adalah bilangan riil sedangkan n, a, dan b adalah bilangan asli (bodo amat dah tuh gw juga dah lupa tu h bilangan asli yg mana bilangan riil yang mana).
Soal 1 Gambarlah diagram Venn dari keterangan berikut. A adalah himpunan semua bilangan ganjil yang lebih dari satu dan kurang dari 8 sedangkan himpunan semestanya adalah bilangan ganjil. B adalah himpunan semua bilangan prima yang kurang dari 10 aedangkan himpunan semestanya adalah bilangan prima. C adalah himpunan huruf vokal sedangkan himpunan semestanya adalah huruf abjad latin. Pembahasan Diagram Venn disajikan dalam kotak persegi atau persegi panjang. Himpunan semesta pada digram Venn dilambangkan dengan S dan ditulis di pojok kiri atas persegi. Setiap himpunan digambarkan dalam sebuah lingkaran. Anggota – anggota himpunan ditulis didalam lingkaran tersebut. Agar lebih paham, saya akan contohkan cara membuat diagram Venn soal a. A = {semua bilangan ganjil yang lebih dari 1 dan kurang dari 8} Pertama kita akan daftarkan semua anggota himpunan A tersebut yaitu sebagai berikut A = {3, 5, 7} Himpunan semesta = S = {bilangan ganjil} Maka diagram Venn nya adalah Dengan cara yang sama, kita bisa membuat diagram Venn untuk soal b dan c. Soal b B = {bilangan prima kurang dari 10} B = {2, 3, 5, 7} Himpunan semestanya = S = {bilangan prima} Diagram Venn – nya adalah sebagai berikut Yang soal c kalian buat sendiri ya! Soal 2 Diketahui himpunan – himpunan berikut! S = {bilangan cacah kurang dari 15} A = {lima bilangan ganjil pertama} B = {lima bilangan genap pertama} C = {faktor dari 8} D = {tiga bilangan kuadrat pertama} a. Nyatakanlah himpunan – himpunan diatas dengan mendaftar anggota – anggotanya. b. Buatlah diagram Venn untuk masing – masing himpunan berikut. a Himpunan S, A dan B b Himpunan S, A dan D c Himpunan S, A, C, dan D Pembahasan Himpunan – himpunan pada soal diatas jika kita daftarkan anggotanya adalah sebagai berikut S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} A = {1, 3, 5, 7, 9} B = {2, 4, 6, 8, 10} C = {1, 2, 4, 8} D = {1, 4, 9} Diagram Venn untuk himpunan S, A dan B Dari anggota himpunan – himpunan diatas dapat kita lihat bahwa setiap anggota himpunan A dan B merupakan anggota himpunan S. maka S adalah himpunan semestanya. Jika kita lihat, tidak ada anggota himpunan A dan B yang sama, maka kedua himpunan tersebut dibuat dalam dua lingkaran yang tidak saling berpotongan, yaitu sebagai berikut Diagram Venn untuk himpunan S, B dan D S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} A = {1, 3, 5, 7, 9} D = {1, 3, 9} Karena semua anggota himpunan A dan D merupakan anggota himpunan S, maka himpunan S adalah himpunan semesta. Jika kita perhatikan, ternyata setiap anggota himpunan D juga ada pada himpunan A. oleh karena itu bisa dikatakan bahwa himpunan D merupakan bagian dari himpunan A. diagram Venn nya adalah berbentuk dua lingkaran dimana lingkaran himpunan D berada di dalam himpunan A. Diagram Venn untuk himpunan S, A, C, dan D S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} A = {1, 3, 5, 7, 9} C = {1, 2, 4, 8} D = {1, 3, 9} Himpunan S adalah himpunan semesta dari himpunan A, C dan D. Jika kita perhatikan ternyata setiap himpunan A, C dan D memiliki anggota yang sama yaitu 1. Maka dapat dipastikan bahwa ketiga lingkaran dari himpunan diatas adalah saling berhimpit. Diagram Venn nya adalah sebagai berikut Soal 3 Berdasarkan diagram Venn berikut, nyatakanlah himpunan berikut dengan mendaftar anggotanya. a. Himpunan S b. Himpunan A c. Himpunan B d. Himpunan C yang anggotanya menjadi anggota A dan B e. Himpunan D yang anggotanya menjadi anggota A dan B f. Himpunan E yang anggotanya tidak menjadi anggota A maupun B g. Himpunan F yang anggotanya hanya menjadi anggota A h. Himpunan G yang anggotanya hanya menjadi anggota B Pembahasan Himpunan S dari diagram Venn diatas merupakan himpunan semesta yaitu himpunan yang memuat semua anggota yang ada dalam persegi. S = {1, 2, 3, 4, 5, 6} Himpunan A adalah himpunan yang anggotanya ada dalam lingkaran kecil. A = {1, 2} Himpunan B adalah himpunan yang anggotanya ada dalam lingkaran besar. ini termasuk semua anggota A. B = {1, 2, 3, 4} Himpunan C yaitu himpunan yang anggotanya menjadi anggota A dan B adalah himpunan A sendiri. Karena anggota himpunan A juga merupakan anggota himpunan B. C = {1, 2} Himpunan D yaitu himpunan yang anggotanya menjadi anggota A atau B adalah himpunan B sendiri. Maksud dari A atau B itu adalah gabungan dari anggota A dan B. D = {1, 2, 3, 4} Himpunan E yang anggotanya tidak menjadi anggota A maupun B adalah yang berada di luar lingkaran A dan B. E = { 5, 6} Himpunan F yang anggotanya hanya menjadi anggota himpunan A ternyata tidak ada. Karena semua anggota himpunan A adalah anggota himpunan B. jadi F merupakan himpunan kosong. F = { } Himpunan G yang anggotanya hanya menjadi anggota himpunan B yaitu yang beradadi luar lingkaran A tetapi masih berada di dalam lingkaran B. G = {3, 4} Soal 4 Gambarlah diagram Venn, apabila himpunan S = {bilangan cacah kurangdari 13} A = {bilangan asli kurang dari 7} B = {bilangan asli lebih dari 6 dan kurang dari 10} C = {bilangan asli ganjil kurang dari 10} Pembahasan Langkah pertama adalah mendaftar anggota setiap himpunan diatas. S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} A = {1, 2, 3, 4, 5, 6} B = {7, 8, 9} C = {1, 3, 5, 7, 9} Karena setiap anggota himpunan A, B dan C adalah anggota himpunan S, maka S adalah himpunan semesta. Jika kita perhatikan, ternyata tidak ada anggota himpunan A, B dan C uyang sama ketiganya. Jadi lingkaran ketiga himpunan diatas pasti tidak saling bertumpang tindih. Tetapi himpunan A dan C memiliki anggota yang sama yaitu 1, 3 dan 5. Maka lingkaran himpunan A akan bertumpang tindih dengan C. Himpunan B dan C juga memiliki anggota yang sama yaitu 7 dan 9. Maka lingkaran himpunan B dan C juga akan saling bertumpang tindih. Ada anggota dari himpunan semesta yang bukan merupakan anggota himpunan A, B dan C yaitu 10, 11, 12 dan 13. Keempatnya akan berada di luar lingkaran A, B dan C. Bentuk diagram Venn nya adalah sebagai berikut Nah, sekian tutorial singkat mengenai cara menggambar dan membaca diagram Venn. Semoga kalian bisa mengerti dan jangan lupa komentari atau share artikel ini ya. Like jugafanpage facebook ya! Sampai jumpa di tutorial selanjutnya.
Bilanganketiga (x + 4) = 11 + 4 = 15 Jadi, jumlah bilangan terbesar dan terkecil adalah: 11 + 15 = 26 Jawaban yang tepat C. 2. Jumlah tiga bilangan ganjil berurutan adalah 63. Jumlah bilangan terbesar dan terkecil dari bilangan tersebut adalah a. 38 b. 42 c. 46 Apabila bilangan yang lebih besar dibagi dengan bilangan yang lebih kecil

BILANGAN ASLI, BILANGAN CACAH, DAN BILANGAN BULAT RESUME Sebagai Pemenuhan Tugas Mata Kuliah Pendidikan Matematika yang Diampu oleh Ibu Dra. Titik Sugiarti , dan Bapak Fajar Surya Hutama, Oleh Kelompok 1 Siti Humaira 150210204010 Nurliana Mawaddah 150210204015 Tika Triyana 150210204030 N. Lailatul Nadhifatul Uyun 150210204040 Kelas B PROGRAM STUDI PENDIDIKAN GURU SEKOLAH DASAR JURUSAN ILMU PENDIDIKAN FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER 2016 BAB I PENDAHULUAN A. Latar Belakang Masalah Matematika merupakan suatu ilmu yang berhubungan dengan penelaahan bentuk-bentuk atau struktur-struktur yang abstrak dan hubungan-hubungannya diantara hal-hal itu. Semakin berkembangnya zaman, teknologi semakin canggih dan pengguna teknologi diharuskan memiliki kemampuan untuk memanfaatkan teknologi tersebut dengan sebaik mungkin. Kemajuan pesat di bidang teknologi informasi dan komunikasi dewasa ini pun dilandasai oleh perkembangan matematika. Pembelajaran matematika di sekolah dasar SD merupakan dasar bagi penerapan konsep matematika pada jenjang berikutnya. Konsekuensinya dalam pelaksanaan pembelajaran matematika di SD harus mampu menata dan meletakkan dasar penalaran siswa yang dapat membantu mamperjelas menyelesaikan permasalahan dalam kehidupan sehari-hari dan kemampuan berkomunikasi dengan bilangan dan simbol-simbol, serta lebih mengembangkan sikap logis, kritis, cermat, disiplin, terbuka, optimis, dan menghargai Matematika. Bilangan adalah suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Bilangan juga merupakan suatu ide yang bersifat abstrak yang akan memberikan keterangan mengenai banyaknya suatu kumpulan benda. Simbol ataupun lambang yang digunakan untuk mewakili bilangan itu disebut angka atau lambang bilangan. Dalam penggunaan sehari-hari, angka, bilangan dan nomor seringkali disamakan, secara definisi, angka, bilangan dan nomor merupakan tiga entitas yang berbeda. Angka adalah suatu tanda atau lambang yang digunakan untuk melambangkan bilangan, sedangkan nomor biasanya menunjuk pada satu atau lebih angka yang melambangkan sebuah bilangan bulat dalam suatu barisan bilangan-bilangan bulat yang berurutan B. Tujuan Tujuan dari penyusunan materi ini adalah untuk memberi pengetahuan kepada pembaca mengenai bilangan asli, bilangan cacah, dan bilangan bulat beseta sifat dan operasinya. BAB II PEMBAHASAN A. Bilangan Asli A 1. Pengertian Bilangan Asli Bilangan asli A counting number atau natural number merupakan bilangan yang dimulai dari angka 1 dan bertambah 1. Pada garis deret ukur bilangan matematika yang dimulai dari angka 1 bertambah 1 ke arah kanan. Contoh bilangan asli adalah 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 2. Operasi Bilangan Asli a. Operasi Penjumlahan Bilangan Asli Penjumlahan adalah menggabungkan sekelompok bilangan atau lebih menjadi suatu bilangan yang merupakan jumlah. Contoh di bawah adalah penjumlahan antara 1 buah bola ditambah dengan 1 buah bola yang menghasilkan 2 buah bola Apabila dinotasikan dengan angka menjadi 1 + 1 = 2 Penjumlahan juga dapat dilakukan dengan bertukar tempat. Pertukaran posisi dari angka yang dijumlahkan akan menghasilkan jumlah yang sama. Maka, 3 + 2 = 5 Demikian pula denga pola berikut ini Maka, 2 + 3 = 5 dan berlaku sifat komutatif pada penjumlahan. Contoh lain 1. 2 + 4 = 6 dan 4 + 2 = 6 2. 12 + 6 = 18 dan 6 + 12 = 18 3. 9 + 95 = 104 dan 95 + 9 = 104 b. Operasi Pengurangan Bilangan Asli Operasi perkurangan dinyatakan dengan tanda minus dalam notasi infix, dengan bentuk rumus c – b = a Dalam pengurangan, bilangan yang dikurangi disebut minuend, bilangan pengurang disebut subtrahend dan jawabannya disebut reminder. Maka c adalah minuend, b adalah subtrahend, dan a adalah reminder. Contoh 1 5 – 3 = 2 2 15 - 7 = 8 3 25 - 11 = 14 4 76 – 6 = 10 c. Operasi Perkalian Bilangan Asli Perkalian adalah operasi matematika penskalaan satu bilangan dengan bilangan lain. Operasi ini adalah salah satu dari empat operasi dasar di dalam aritmetika dasar yang lainnya adalah penjumlahan, pengurangan, pembagian. Perkalian terdefinisi untuk seluruh bilangan di dalam suku-suku perjumlahan yang diulang-ulang misalnya, 3 dikali 4 seringkali dibaca "3 kali 4" dapat dihitung dengan menjumlahkan 3 salinan dari 4 bersama-sama 3 x 4 = 4 + 4 + 4 = 12 Contoh lain 1 5 x 3 = 3 + 3 + 3 + 3 + 3 = 15 2 7 x 5 = 5 + 5 + 5 + 5 + 5 + 5 + 5 = 35 3 4 x 11 = 11 + 11 + 11 + 11 = 44 d. Operasi Pembagian Bilangan Asli Pembagian adalah konsep matematika utama yang seharusnya dipelajari oleh anak-anak setelah mereka mempelajari operasi penambahan, pengurangan dan perkalian. Pembagian adalah pengurangan berulang. Contohnya 12 4 artinya β€œ12 – 4 – 4 - 4 = 0” maka hasilnya 12 4 = 3. Dalam tahap ini, diperkenalkan terlebih dahulu konsep Pembagian sebagai Pengurangan Beruntun dalam kehidupan sehari-hari, misalnya dengan menggunakan pensil atau buku yang berada di sekitar anak-anak belajar. Sebagai keterangan tambahan, cara mengajarkan fakta-fakta pembagian dapat menggunakan gambar-gambar benda nyata dalam bentuk soal secara pengurangan berulang-ulang. Contoh 1. Ibu mempunyai 10 permen dibagikan kepada 5 orang anak setiap anak mendapat sama banyak berapa permen yang diterima setiap anak ? Jawab 10 5 artinya 10 dikurangi 5 secara berulang sampai habis / hasilnya 0 10 – 5 – 5 = 0 habis Pengurangan selesai setelah 2 kali, jadi setiap anak mendapat 2 permen. 2. 8 2 = 8 – 2 – 2 – 2 – 2 = 0 Maka, 8 2 = 4 3. 20 4 = 16 – 4 – 4 – 4 – 4 – 4 = 0 Maka, 20 4 = 5 3. Sifat-sifat Operasi Bilangan Asli a. Sifat komutatif Seperti yang telah kamu ketahui, sifat komutatif disebut juga sifat pertukaran. Untuk lebih jelasnya, perhatikan penjumlahan berikut. 2 + 4 = 6 4 + 2 = 6 Jadi, 2 + 4 = 4 + 2. Sifat seperti ini dinamakan sifat komutatif pada penjumlahan. Sekarang, coba perhatikan perkalian berikut. 2 Γ— 4 = 8 4 Γ— 2 = 8 Jadi, 2 Γ— 4 = 4 Γ— 2. Sifat seperti ini dinamakan sifat komutatif pada perkalian. Apakah sifat komutatif berlaku pada pengurangan dan pembagian? Perhatikan contoh berikut. 1 2 – 4 = –2 dan 4 – 2 = 2 Jadi, 2 – 4 tidak sama dengan 4 – 2, atau 2 – 4 β‰  4 – 2. 2 2 4 = 0,5 dan 4 2 = 2 Diperoleh bahwa 2 4 tidak sama dengan 4 2, atau 2 4 β‰  4 2. Jadi, pada pengurangan dan pembagian tidak berlaku sifat komutatif. b. Sifat Asosiatif Pada penjumlahan dan perkalian tiga bilangan bulat berlaku sifat asosiatif atau disebut juga sifat pengelompokan. Perhatikanlah contoh penjumlahan tiga bilangan berikut. 2 + 3 + 4 = 5 + 4 = 9 2 + 3 + 4 = 2 + 7 = 9 Jadi, 2 + 3 + 4 = 2 + 3 + 4. Sifat seperti ini dinamakan sifat asosiatif pada penjumlahan. Sekarang, coba perhatikan contoh perkalian berikut. 2 Γ— 3 Γ— 4 = 6 Γ— 4 = 24 2 Γ— 3 Γ— 4 = 2 Γ— 12 = 24 Jadi, 2 Γ— 3 Γ— 4 = 2 Γ— 3 Γ— 4. Sifat ini disebut sifat asosiatif pada perkalian. c. Sifat Distributif Selain sifat komutatif dan sifat asosiatif, terdapat pula sifat distributif. Sifat distributif disebut juga sifat penyebaran. Untuk lebih memahaminya, perhatikanlah contoh berikut. Contoh 1 Apakah 3 Γ— 4 + 5 = 3 Γ— 4 + 3 Γ— 5 ? Jawab 3 Γ— 4 + 5 = 3 Γ— 9 = 27, dan 3 Γ— 4 + 3 Γ— 5 = 12 + 15 = 27. Jadi, 3 Γ— 4 + 5 = 3 Γ— 4 + 3 Γ— 5 Contoh 2 Apakah 3 Γ— 4 – 2 = 3 Γ— 4 – 3 Γ— 2 ? Jawab 3 Γ— 4 – 2 = 3 Γ— 2 = 6, dan 3Γ— 4 – 3 Γ— 2 = 12 – 6 = 6. Jadi, 3 Γ— 4 – 2 = 3 Γ— 4 – 3 Γ— 2. B. Bilangan Cacah 1. Pengertian Bilangan Cacah Bilangan cacah merupakan himpunan bilangan asli ditambah dengan bilangan nol. Bilangan asli sendiri merupakan bilangan yang dimulai dari 1, lalu selanjutnya bertambah satu-satu. Contoh bilangan cacah yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 2. Operasi Pada Bilangan Cacah Operasi pada bilangan cacah meliputi penjumlahan, pengurangan, perkalian dan pembagian. a. Operasi Penjumlahan Bilangan Cacah Ada 2 pendekatan atau jalan untuk menerangkan penjumlahan, yaitu melalui kumpulan, dan dengan pengukuran. 1. Penjumlahan melalui kumpulan Penjumlahan dengan menggunakan dasar kumpulan didasarkan kepada gabungan dua kumpulan lepas. Mengingat dunia anak-anak masih nyata maka kumpulan yang diambil harus kumpulan dengan anggota benda nyata atau gambar dengan anggota real. Misalnya Saya punya kelerang dua buah. Kemudian saya membeli lagi tiga buah. Berapa buah kelerang yang sekarang saya miliki ? Kita juga dapat menggunakan benda-benda lain, seperti buku, mobil-mobilan, pensil, dan lain-lain. 2. Penjumlahan melalui pengukuran Pada penjumlahan dengan pengukuran, yang dijumlahkan itu bukan bilangan kardinal dari kumpulan-kumpulan tetapi ukuran panjangnya. Penjumlahan dengan pengukuran dapat diperagakan dengan menggunakan garis bilangan. Contoh 3. Sifat- sifat penjumlahan a Sifat tertutup, yang berarti hasil dari penjumlahan bilangan cacah a dan bilangan cacah b adalah berupa bilangan cacah, misalnya 0 + 1 = 1 1 + 2 = 3 b Sifat komutatif atau juga sering dikenal dengan sifat pertukaran berlaku a + b = b + a, misalnya 1 + 0 = 1 dan 0 + 1 = 1 3 + 1 = 4 dan 1 + 3 = 4 c Sifat Asosiatif atau juga dikenal dengan nama sifat pengelompokan, berlaku a + b + c = a + b + c , misalnya 1 + 2 + 3 = 6 dan 1 + 2 + 3 = 6 3 + 1 + 6 = 10 dan 3 + 1 + 6 = 10 d Unsur Identitas, yang berarti apabila dijumlah suatu bilangan cacah dengan bilangan nol maka hasilnya adalah bilangan itu sendiri, misalnya 0 + a = a + 0 = a 0 + 3 = 3 + 0 = 3 5 + 0 = 5 b. Operasi Pengurangan Bilangan Cacah Pada penjumlahan, kita mencari jumlahnya. 4 + 3 = Suku suku jumlah Sedangkan, pada pengurangan, kita mencari selisihnya. 5 - 3 = Yang dikurangi pengurang selisih Pada 5 – 3 = kita harus mencari bilangan yang bila ditambahkan kepada 3 diperoleh 5. Ada beberapa cara untuk menjelaskan operasi pengurangan kepada anak usia SD. 1. Pengurangan melalui kumpulan Banyak cerita sehari-hari yang pemecahannya memerlukan pemahaman pengurangan. Misalnya Ada 5 ekor anak ayam. Dua ekor lari mengejar kupu-kupu. Berapa ekor anak ayam yang tinggal ? gambar atau model konkretnya dapat sebagai berikut 2. Pengurangan melalui pengukuran Pengurangan dengan pengukuran dapat dilakukan dengan menggunakan garis bilangan. Meragakan penjumlahan pada garis bilangan ialah dengan bergerak maju ke sebelah kanan, sedangkan pengurangan berlawanan arah dengan penjumlahan yaitu bergerak mundur ke sebelah kiri. Contoh 4 – 2 = 2 3. Pengurangan dengan bilangan nol Setiap bilangan jika dikurangi oleh nol, hasilnya adalah bilangan itu sendiri. Misalnya Contoh 1 6 – 0 = 6 2 15 – 0 = 15 3 24 - 0 = 24 c. Operasi Perkalian Bilangan Cacah Operasi perkalian bilangan cacah dapat didefinisikan sebagai hasil penjumlahan berulang bilangan-bilangan cacah. Jika a dan b bilangan-bilangan cacah. Maka a x b dapat didefinisikan sebagai a x b = b + b + b + b +b +... + b sebanyak a kali Oleh karena itu, 4 x 3 mengandung arti 3 + 3 + 3 + 3. Sedangkan 3 x 4 mengandung arti 4 + 4 + 4. Jadi secara konseptual a x b tidak sama dengan b x a, akan tetapi kalau dilihat hasilnya saja maka a x b = b x a. 1. Perkalian sebagai penjumlahan berulang Perhatikan soal berikut ini. β€œIbu Ani mempunyai 2 dus telur yang masing-masing dus berisi 6 telur. Berapa butir telur yang Ibu Ani miliki ?” banyaknya telur yang dimiliki oleh Ibu Ani adalah 2 x 6 butir. Dari soal itu, jelas bahwa banyaknya telur Ibu Ani 6 + 6. Jadi 2 x 6 = 6 + 6 = 12. Dengan demikian maka soalsoal 5 x 2, 6 x 1, 4 x 2, 2 x 4, dapat diselesaikan dengan penjumlahan berulang sebagai berikut. 5 x 2 = 2 + 2 + 2 + 2 + 2 = 10 6 x 1 = 1 + 1 + 1 + 1 + 1 + 1 = 6 4 x 2 = 2 + 2 + 2 + 2 = 8 2 x 4 = 4 + 4 = 8 Namun, perlu diingat bahwa walaupun hasil akhirnya sama, namun secara proses 5 x 2 tidak sama dengan 2 x 5, 5 x 2 merupakan jumlah dari lima bilangan 2, sedangkan 2 x 5 merupakan jumlah dari dua bilangan 5. Untuk mengingatnya, kita bisa menganalogikannya pada reserp dokter. 3 x 1 artinya tiga kali minum obat, dengan setiap kali meminum obat, obat yang diminun 1 tablet. 2. Sifat-sifat perkalian bilangan cacah a Sifat tertutup Sifat tertutup adalah hasil perkalian bilangan cacah a dan b berupa bilangan cacah. Misalnya 1 0 x 1 = 0 bilangan cacah 2 1 x 2 = 2 bilangan cacah 3 4 x 5 = 20 bilangan cacah b Sifat komutatif pertukaran Pada operasi perkalian sebarang bilangan cacah a dan b berlaku a x b = b x a, contoh 1 1 x 0 = 0 dan 0 x 1 = 0 2 3 x 2 = 6 dan 2 x 3 = 6 3 4 x 5 = 20 dan 5 x 4 = 20 c Sifat asosiatif pengelompokan Pada operasi perkalian sebarang bilangan cacah a, b dan c berlaku a x b x c = a x b x c, misalnya 1 1 x 2 x 3 = 1 x 2 x 3 Ruas kiri 1 x 2 x 3 Ruas Kanan 1 x 2 x 3 = 2 x 3 = 1 x 6 = 6 = 30 2 3 x 1 x 6 = 3 x 1 x 6 Ruas kiri 3 x 1 x 6 Ruas Kanan 3 x 1 x 6 = 3 x 6 = 3 x 6 = 18 = 18 d Sifat distributif penyebaran perkalian terhadap penjumlahan Pada perkalian terhadap penjumlahan bilangan cacah sebarang a, b dan c berlaku a x b + c = a x b + a x c, misalnya 1 2 x 3 + 4 = 2 x 3 + 2 x 4 Ruas kiri 2 x 3 + 4 Ruas Kanan 2 x 3 + 2 x 4 = 2 x 7 = 6 + 8 = 14 = 14 2 4 x 1 + 3 = 4 x 1 + 4 x 3 Ruas kiri 4 x 1 + 3 Ruas Kanan 4 x 1 + 4 x 3 = 4 x 4 = 4 + 12 = 16 = 16 e Perkalian dengan bilangan nol Hasil perkalian bilangan cacah a dengan bilangan nol adalah nol. Misalnya 1 a x 0 = 0 2 5 x 0 = 0 3 0 x 14 = 0 f Unsur Identitas Hasil perkalian bilangan cacah a dengan bilangan 1 adalah bilangan a itu sendiri. Misalnya 1 1 x a = a 2 1 x 34 = 34 3 7 x 1 = 7 d. Operasi Pembagian Bilangan Cacah Konsep pembagian diperkenalkan kepada siswa setelah ia memahami konsep perkalian. Seperti pada penjumlahan, pengurangan, dan perkalian, pembagian diperkenalkan kepada anak dengan menggunakan benda-benda real atau gambar-gambar benda real yang dikaitkan dengan kehidupan sehari-hari. Dengan keadaan yang sehari-hari yang sebenarnya itu diubah ke dalam model konkrit atau gambar yang dilanjutkan dengan simbol. Misalnya β€œada 6 buah kue yang harus dibagi sama di antara 3 anak. Berapa buah kue untuk setiap anak ?” Maka, setiap anak akan mendapatkan 2 buah kue. Sesuai dengan macamnya soal cerita yang dapat diselesaikan dengan pembagian, kita dapat menggunakan bermacam-macam pendekatan dalam menanamkan pengertian pembagian. Pendekatan-pendekatan itu melalui pengurangan berulangan dan cara bersusun pendek. 1. Pembagian sebagai pengurangan berulang Menyelesaikan soal 10 2 dengan cara pengurangan berulang ialah sebagai berikut. Kurangi 10 itu dengan 2 terus menerus sampai habis atau sisanya lebih kecil dari 2. Kemudian kita lihat berapa kali pengurangan dilakukan. 10 8 6 2 _ ke-3 4 ternyata bahwa sampai sisinya 0 2 _ ke-4 oleh 2 itu terjadi 5 kali. Ini berarti 2 pengurangan 10 berarti 10 2 = 5 0 C. Bilangan Bulat 1. Pengertian Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 87, 65, -34, 0. Bilangan bulat terdiri dari bilangan bulat positif dan bilangan bulat negatif. Bilangan bulat di dalamnya juga terdapat bilangan asli dan cacah. Himpunan bilangan bulat diberi simbol B dan dinyatakan sebagai berikut B = {…, -3, -2, -1, 0, 1, 2, 3, 4, …}. Dalam bentuk garis bilangan 2. Operasi Hitung Bilangan Bulat a. Operasi Penjumlahan Bilangan Bulat + 1. Penjumlahan bilangan bulat positif dengan bilangan bulat positif Penjumlahan bilangan bulat positif dengan bilangan bulat positif selalu menghasilkan bilangan positif. Contohnya 2 + 5 = 7 2. Penjumlahan bilangan bulat positif dengan bilangan bulat negatif Penjumlahan bilangan bulat positif dengan bilangan bulat negatif akan menghasilkan a Bilangan bulat negatif, jika bilangan bulat negatif lebih besar daripada bilangan bulat positif. Contoh 3 + -5 = -2 b Bilangan nol, jika bilangan bulat positif sama dengan bilangan bulat negatif. c Bilangan bulat positif, jika bilangan bulat positif lebih besar daripada bilangan negatif. Contoh 4 + -3 = 1 3. Penjumlahan bilangan bulat negatif dengan bilangan positif Penjumlahan bilangan bulat negatif dengan bilangan bulat positif akan menghasilkan a Bilangan bulat negatif, jika bilangan bulat negatif lebih besar daripada bilangan bulat positif. Contoh -6 + 3 = -3 b Bilangan nol, jika bilangan bulat negatif sama dengan bilangan bulat positif. Contoh -3 +3 = 0 c Bilangan bulat positif, jika bilangan bulat positif lebih besar daripada bilangan negatif. Contoh -4 + 6 = 2 4. Penjumlahan bilangan bulat negatif dengan bilangan bulat negatif Penjumlahan bilangan bulat negatif dengan bilangan bulat negatif selalu menghasilkan bilangan bulat negatif. Contoh -2 + -3 = -5 b. Operasi Pengurangan Bilangan Bulat - 1. Pengurangan bilangan bulat positif dengan positif Pengurangan bilangan bulat positif dengan bilangan bulat positif akan menghasilkan a Bilangan bulat positif, jika bilangan yang dikurangi lebih besar daripada yang mengurangi. Contoh 4 – 3 = 1 b Bilangan nol, jika bilangan yang dikurangi sama dengan bilangan yang mengurangi. Contoh 3 – 3 = 0 c Bilangan bulat negatif, jika bilangan yang mengurangi lebih besar daripada bilangan yang dikurangi. Contoh 2 – 5 = -3 2. Pengurangan bilangan bulat negatif dengan negatif Pengurangan bilangan bulat negatif dengan bilangan bulat negatif akan menghasilkan a Bilangan bulat positif, jika bilangan yang mengurangi lebih besar daripada bilangan yang dikurangi. Contoh -3 – -6 = 3 b Bilangan nol, jika bilangan yang dikurangi sama dengan bilangan yang mengurangi. Contoh -3 – -3 = 0 c Bilangan bulat negatif, jika bilangan yang dikurangi lebih besar daripada bilangan yang mengurangi. Contoh -5 – -2 = -3 3. Pengurangan bilangan bulat negatif dengan bilangan bulat positif Pengurangan bilangan bulat negatif dengan bilangan bulat positif akan menghasilkan bilangan bulat negatif. Contoh -2 - 3 = -5 4. Pengurangan bilangan bulat positif dengan bilangan bulat negatif Pengurangan bilangan bulat positif dengan bilangan bulat negatif akan menghasilkan bilangan bulat negatif. Contoh 2 – -3 = 5 c. Operasi Perkalian Bilangan Bulat x Perlu diingat bahwa dalam operasi perkalian walaupun hasil akhirnya sama, namun secara proses 5 x 2 tidak sama dengan 2 x 5, 5 x 2 merupakan jumlah dari lima bilangan 2, sedangkan 2 x 5 merupakan jumlah dari dua bilangan 5. Untuk mengingatnya, kita bisa menganalogikannya dengan resep dokter. 3 x 1 artinya tiga kali minum obat, dengan setiap kali meminum obat, obat yang diminun 1 tablet yang diminum pagi, siang dan malam. 1. Perkalian bilangan bulat positif dengan bilangan bulat positif Perkalian bilangan bulat positif dengan bilangan bulat positif akan menghasilkan bilangan bulat positif. a x b = ab atau b x a = ba dan berlaku sifat komutatif. Contoh 1 7 x 6 = 6 + 6 + 6 + 6 + 6 + 6 + 6 = 42 2 6 x 7 = 7 + 7 + 7 + 7 + 7 + 7 + 7 = 42 3 3 x 3 = 3 + 3 + 3 = 9 2. Perkalian bilangan bulat positif dengan bilangan bulat negatif Perkalian bilangan bulat positif dengan bilangan bulat negatif akan menghasilkan bilangan bulat negatif. a x -b = -ab Contoh 1 4 x -3 = -3 + -3 + -3 + -3 = -12 2 5 x -4 = -4 + 4 + -4 + -4 + -4 = -20 3. Perkalian bilangan bulat negatif dengan bilangan bulat positif Jika 3 x -4 = -3 + -3 + -3 + -3 = -12, bagaimana dengan -4 x 3 ? bisakah kita menggunakan penjumlahan berulang angka 3 sebanyak –4 kali ? tentunya tidak bisa. Contoh -5 x 3 = ... Maka untuk menghitung perkalian bilangan bulat negatif dengan bilangan bulat positif, dengan memperhatikan pola penalaran berikut 3 x 1 = 3 2 x 1 = 2 1 x 1 = 1 0 x 1 = 0 -1 x 1 = -1 -2 x 1 = -2 -3 x 1 = -3 -4 x 1 = -4-5 x 1 = -5, dan seterusnya Apabila diteruskan nilainya akan selalu negatif, dan selisih antara hasil pertama dan hasil kedua selisih -1 dan begitu seterusnya. Dari pola tersebut terlihat bahwa perkalian bilangan bulat positif dan bilangan bulat negatif adalah bilangan negatif. Jadi, -5 x 3 = -15. Contoh lain 1. -25 x 2 = -502. 2 x -25 = -50 3. -3 x 4 = -12 4. Perkalian bilangan bulat negatif dengan bilangan bulat negatif Contoh soal. -4 x -3 = ? Perkalian bilangan bulat negatif dengan bilangan bulat negatif akan selalu menghasilkan bilangan bulat positif -a x -b = ab. Perhatikan pola penalaran berikut ini -4 x 3 = -12 -4 x 2 = -8 -4 x 1 = -4 -4 x 0 = 0 -4 x -1 = 4 -4 x -2 = 8 -4 x -3 = 12, dan seterusnya. Apabila diteruskan nilainya akan selalu positif, dan hasil perkalian pertama dengan perkalian kedua selisih 4 dan bertambah 4 seterusnya. Kemudian pengali pertama dengan kedua dikurangi 1 -1 hingga seterusnya. Dari pola tersebut terlihat bahwa perkalian bilangan bulat negatif dan bilangan bulat negatif adalah bilangan positif. Dari pola penalaran tersebut juga dapat disimpulkan, bahwa perkalian dengan bilangan 0 akan menghasilkan 0. Jadi, -4 x -3 = 12. Contoh lain 1 -4 x -5 = 202 -5 x -4 = 20 3 -7 x -3 = 21 4 -5 x -2 = 10 d. Operasi Pembagian Bilangan Bulat Operasi pembagian bilangan bulat dapat dilakukan dengan cara pengurangan berurutan hingga menghasilkan 0. 1. Pembagian bilangan bulat positif dengan bilangan bulat positif Pembagian bilangan bulat positif dengan bilangan bulat positif akan selalu menghasilkan bilangan bulat positif. Contoh 1 8 2 = ... Cara ke-1 8 2 artinya ada berapa β€œduaan” dalam 8. Dalam kotak tersebut terdapat lingkaran hitam sebanyak 8, kemudian di ikat sama banyak. Masing-masing ikatan berisi dua lingkaran hitam. Maka ada 4 ikatan yang isinya sama banyak. Jadi, 8 2 = 4 Cara ke-2 Untuk pengerjakan operasi pembagian juga dapat dilakukan dengan menggunakan operasi perkalian. Perhatikan contoh soal berikut ini. = 4, sama artinya dengan 2 x 4 = 8 82 = 2, sama artinya dengan 4 x 2 = 8 84 82 20 5 Jadi, a b 2 9 3 = ... 9 – 3 = 6 , pengurangan ke-1 6 – 3 = 3 , pengurangan ke-2 3 – 3 = 0 , pengurangan ke-3 Dalam pembagian 9 3 terjadi 3 kali mengurangi 9 dengan 3 sehingga hasilnya 0, maka 9 3 = 3 2. Pembagian bilangan bulat negatif dengan bilangan bulat positif, bilangan bulat positif dengan bilangan bulat negatif, dan bilangan bulat negatif dengan negatif. Contoh a Pembagian bilangan bulat negatif dengan bilangan bulat positif -8 2 = ... = -4, artinya 2 x -4 = -8 -8 2 -8 Contoh lain = q , maka angka berapa yang di kalikan 5 akan menghasilkan -15. 5 x q = -15, maka q adalah -3. 5 x -3 = -15. Jadi, -15 5 = -3 -15 5 b Pembagian bilangan bulat positif dengan bilangan bulat negatif = n , maka angka berapa yang di kalikan -3 akan menghasilkan 18. -3 x n = 18, maka n adalah -6. -3 x -6 = 18. Jadi, 18 -3 = -6 18 -3 c Pembagian bilangan bulat negatif dengan bilangan bulat negatif = p , maka angka berapa yang di kalikan -6 akan menghasilkan -12. -6 x p = -12, maka p adalah 2 -6 x 2 = -12 Jadi, -12 -6 = 2 -12 -6 3. Sifat Operasi Bilangan Bulat a. Sifat komutatif Sifat komutatif pertukaran pada penjumlahan dan perkalian untuk setiap bilangan bulat a dan b, berlaku sebagi berikut a + b = b + a dan a x b = b x a, berlaku untuk semua bilangan bulat. Contoh 1 3 + -9 = -6 dan -9 + 3 = -6 2 3 + 5 = 8 dan 5 + 3 = 8 3 4 x 2 = 8 dan 2 x 4 = 8 4 3 x 2 = 6 dan 2 x 3 = 6 5 4 x -2 = -8 dan -2 x 4 = -8 b. Sifat asosiatif Sifat asosiatif pengelompokan pada penjumlahan dan perkalian untuk setiap a, b, dan c bilangan-bilangan bulat berlaku a + b + c = a + b + c a x b x c = a x b x c, berlaku untuk semua bilangan bulat Contoh 1 9 + -5 + -2 = 9 + -5 + -2 Ruas kiri 9 + -5 + -2 Ruas Kanan 9 + -5 + -2 = 4 + -2 = 9 + -7 = 2 = 2 2 2 + 4 + 6 = 2 + 4 + 6 Ruas kiri 2 + 4 + 6 Ruas Kanan 2 + 4 + 6 = 6 + 6 = 2 + 10 = 12 = 12 3 3 x 2 x 4 = 3 x 2 x 4 Ruas kiri 3 x 2 x 4 Ruas Kanan 3 x 2 x 4 = 6 x 4 = 3 + 8 = 24 = 24 4 3 x 5 x -2 = 3 x 5 x -2 Ruas kiri 3 x 5 x -2 Ruas Kanan 3 x 5 x -2 = 15 x -2 = 3 x -10 = -30 = -30 c. Sifat distributif penyebaran Sifat distributif penyebaran berlaku a x b + c = a x b + a x c, yang berlaku untuk semua bilangan bulat. Contoh 1 4 x 5 + 2 = 4 x 5 + 4 x 2 Ruas kiri 4 x 5 +2 Ruas Kanan 4 x 5 + 4 x 2 = 4 x 7 = 20 + 8 = 28 = 28 2 3 x -2 + 4 = 3 x -2 + 3 x 4 Ruas kiri 3 x -2 + 4 Ruas Kanan 3 x -2 + 3 x 4 = 3 x 2 = -6 + 12 = 6 = 6 BAB III PENUTUP Kesimpulan Bilangan asli A counting number atau natural number merupakan bilangan yang dimulai dari angka 1 dan bertambah 1. Pada garis deret ukur bilangan matematika yang dimulai dari angka 1 bertambah 1 ke arah kanan. Contoh bilangan asli adalah 1, 2, 3, 4, 5, 6, 7, 8, 9, ... Operasi bilangan asli meliputi penjumlahan, pengurangan, perkalian, dan pembagian. Sifat-sifat bilangan asli meliputi sifar komutatif pertukaran, sifat asosiatif pengelompokan, dan sifat distributif penyebaran. Bilangan cacah merupakan himpunan bilangan asli ditambah dengan bilangan nol. Bilangan asli sendiri merupakan bilangan yang dimulai dari 0, lalu selanjutnya bertambah satu-satu. Contoh bilangan cacah yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... Operasi bilangan cacah meliputi penjumlan, pengurangan, perkalian, dan pembagian. Operasi penjumlahan ada 2 pendekatan atau jalan untuk menerangkan penjumlahan, yaitu melalui kumpulan, dan dengan pengukuran. Sifat penjumlahan bilangan cacah meliputi tertutup, komutatif, asosiatif, dan usur identitas. Operasi pengurangan ada beberapa cara untuk menjelaskan operasi pengurangan kepada anak usia SD, yaitu meliputi pengurangan melalui kumpulan, pengurangan melalui pengukuran, dan pengurangan dengan bilangan nol. Operasi perkalian bilangan cacah dapat didefinisikan sebagai hasil penjumlahan berulang bilangan-bilangan cacah. Jika a dan b bilangan-bilangan cacah. Maka a x b dapat didefinisikan sebagai a x b = b + b + b + b +b +... + b sebanyak a kali. Sifat perkalian bilangan cacah meliputi sifat tertutup, komutatif, asosiatif, distributif, perkalian dengan bilangan nol, dan unsur identitas. Operasi pembagian bilangan cacah dapat dilakukan dengan cara pengurangan berulang-ulang. Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 87, 65, -34, 0. Bialangan bulat terdiri dari bilangan bulat positif dan bilangan bulat negatif. Bilangan bulat didalamnya juga terdapat bilangan asli dan cacah. Himpunan bilangan bulat diberi simbol B dan dinyatakan sebagai berikut B = {…, -3, -2, -1, 0, 1, 2, 3, 4, …}. Operasi bilangan bulat meliputi operasi penjumlahan, pengurangan, pengurangan, pembagian. Operasi penjumlahan bilangan bulat meliputi penjumlahan bilangan bulat positif dengan bilangan bulat positif, penjumlahan bilangan bulat positif dengan bilangan bulat negatif, penjumlahan bilangan bulat negatif dengan bilangan positif, dan penjumlahan bilangan bulat negatif dengan bilangan bulat negatif. Operasi pengurangan bilangan bulat meliputi pengurangan bilangan bulat positif dengan positif , pengurangan bilangan bulat negatif dengan negatif, pengurangan bilangan bulat negatif dengan bilangan bulat positif, pengurangan bilangan bulat positif dengan bilangan bulat negatif. Operasi perkalian bilangan bulat meliputi perkalian bilangan bulat positif dengan bilangan bulat positif, perkalian bilangan bulat positif dengan bilangan bulat negatif, perkalian bilangan bulat negatif dengan bilangan bulat positif, perkalian bilangan bulat negatif dengan bilangan bulat negatif. Operasi pembagian bilangan bulat meliputi pembagian bilangan bulat positif dengan bilangan bulat positif, pembagian bilangan bulat negatif dengan bilangan bulat positif, pembagian bilangan bulat negatif dengan bilangan bulat negatif, pembagian bilangan bulat positif dengan bilangan bulat negatif. Pada bilangan bulat terdapat sifat-sifat tentang penjumlahan dan perkalian yaitu komutatif, asosiatif, dan distributif. DAFTAR PUSTAKA Untoro, J. 2006. Buku Pintar Matematika SD untuk Kelas 4, 5, dan 6. Jakarta Wahyumedia Untoro, Joko. 2007. Genius Matematika Kelas 4 SD. Jakarta Wahyumedia Karso, dkk. 2013. Pendidikan Matematika 1. Banten Universitas Terbuka. Joeniarsih, Asih. 2012. Makalah Matematika Bilbul. Online, diakses pada tanggal 16 Februari, 2016, Simanjuntak, Lismawati, dkk. 2003. Metode Mengajar Matematika I. Jakarta Rineka Cipta

Jika109 adalah bilangan komposit, maka 109 harus mempunyai suatu faktor prima p sedemikian sehingga p2 ≀ 109. Bilangan-bilangan prima yang dikuadratkan tidak melewati 109 adalah 2, 3, 5, dan 7. Kita tahu bahwa 2, 3, 5 dan 7 masing-masing bukan merupakan faktor dari 109. Dengan demikian 109 adalah bilangan prima.
MatematikaALJABAR Kelas 7 SMPHIMPUNANOperasi HimpunanDiketahui S = {bilangan Cacah kurang dari 15} A = {bilangan asli genap kurang dari 11} B = {bilangan asli ganjil kurang dari 8} C = {bilangan asli lebih dari 4 dan kurang dari 7} a. Tentukan anggota dari himpunan S, A, B, dan C b. Tentukan anggota dari B u C,A u B,A u C, dan A u B u C c. Gambarlah diagram Venn-nyaOperasi HimpunanDiagram VennHIMPUNANALJABARMatematikaRekomendasi video solusi lainnya0115Diketahui S = {1, 2, 3, 10} dan A = {x faktor dari 12, x...0332Dari 40 orang anak, 16 anak memelihara burung, 21anak mem...0041Diketahui A={2,3,4} dan B={1,3}, maka A⋃B adalah ... a...Teks videoPertama anggota dari himpunan s a b dan c ya. Nah yang tentukan anggota himpunan S terlebih dahulu dimana anggota bilangan cacah kurang dari 15 berarti dimulai dari 2 4 5 6 7 8 9 10 11 12 13 dan 14 ya Kemudian untuk anggota himpunan a yaitu anggotanya adalah bilangan asli kurang dari 1 bilangan asli genap kurang dari 11 maka dimulai dari 2 4 8 10 ya kemudianAnggota himpunan b. Di mana anggotanya adalah bilangan asli ganjil kurang dari 8 berarti dimulai dari 15 dan kemudian untuk anggota himpunan C dimana anggota c adalah bilangan asli lebih dari 4 kurang dari dimulai dari Nah selanjutnya adalah B Tentukan anggota dari B nah untuk tanda akan gabungan ya artinya gabungan C maka himpunan b gabungan himpunan himpunan b adalah dari 1 3 5 7 5 6, maka gabungannya adalah5 6 dan 7 ya selanjutnya gabungan b. Maka a gabungan b. A gabungan dan gabungan b yaitu 1 2 3 4 5 8 dan selanjutnya untuk a gabungan C berarti anggota A digabung anggota C ya 2 2 4 5 6 8 dan 10 ya lanjutnya yang terakhir adalah a. Gabungan b. Gabungan c. A gabungan b gabungan c. A gabungan Nya maka gabungannya adalah2 3 4 5 6 8 dan Ulya nah menggambarkan diagram Venn Ayah Nah kita Gambarkan nah ini adalah gambar dari diagram Venn Ayah di mana nah kemudian kita masuk anggota himpunan b kita masukkan terlebih dahulu dan himpunan yang sama kita lihat himpunan kemudian 5 Nah selanjutnyahimpunan ayah a 2 4 8 dan 10 kanjutnya untuk Kemudian untuk anggota yang tidak terdapat dari himpunan AB adalah lalu-lalu 9 11 12 14
Bilanganprima merupakan bilangan asli yang mempunyai tepat dua pembagi yaitu bilangan 1 dan bilangan itu sendiri. Beberapa contoh bilangan prima yaitu 2, 3, 5, 7, dan bilangan prima yang lainnya. Semua bilangan prima kurang dari 100 yaitu sebagai berikut. Bilangan prima memiliki peranan yang penting dalam teknologi, terutama di bidang Diketahui A ={bilangan asli kurang dari 20} B = {bilangan asli genap kurang dari 15} C ={bilangan asli ganjil kurang dari 10} D ={bilangan asli lebih dari 7 dan kurang dari 15} a. Tentukan anggota dari himpunan A, B, C, dan D Cara penyelesaian A ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 } B = {2, 4, 6, 8, 10, 12, 14 } C ={1, 3, 5, 7, 9} D ={8, 9, 10, 11, 12, 13, 14} anggota dari B ∩ C, B ∩ D, dan C ∩ D Cara penyelesaian B ∩ C = { } B ∩ D ={8, 10, 12, 14} C ∩ D ={ 9} c. Gambarlah diagram Venn-nya Cara penyelesaian Bilanganreal atau bilangan riil menyatakan bilangan yang dapat dituliskan dalam bentuk decimal, seperti 2,86547 atau 3.328184. Dalam notasi penulisan bahasa Indonesia, bilangan desimal adalah bilangan yang memiliki angka di belakang koma "," sedangkan menurut notasi ilmiah, bilangan desimal adalah bilangan yang memiliki angka di belakang tanda titik ".".

Bilangan asli adalah bilangan yang dimulai dari 1, 2, 3, 4, dan seterusnya. Bilangan asli termasuk dalam bilangan cacah. Bilangan cacah terdiri dari bilangan asli ditambah dengan 0. Bilangan cacah merupakan bilangan yang digunakan untuk pencacahan, yaitu proses menentukan banyak benda. Bilangan cacah yaitu 0, 1, 2, 3, 4, dan seterusnya. Pengertian Bilangan Asli Bilangan asli adalah bilangan yang terdiri dari 1, 2, 3, 4, 5, dan seterusnya. Bilangan asli merupakan salah satu konsep matematika yang paling sederhana dan termasuk konsep pertama yang bisa dipelajari dan dimengerti oleh manusia, bahkan beberapa penelitian menunjukkan beberapa jenis kera juga bisa menangkapnya. Wajar apabila bilangan asli adalah jenis pertama dari bilangan yang digunakan untuk membilang, menghitung, dsb. Setiap bilangan, misalnya bilangan 1, adalah konsep abstrak yang tak bisa tertangkap oleh indra manusia, tetapi bersifat universal berlaku umum. Contoh Bilangan Asli Contoh bilangan asli ada banyak sekali dan bahkan tak terhingga. Misalnya 10 bilangan asli pertama yaitu 1, 2, 3, 4, 5, 6, 7, 8, 9, dan 10. Bilangan asli kurang dari 15 yaitu 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, dan 14. Bilangan asli kurang dari 5 yaitu 1, 2, 3, dan 4. Bilangan asli kelipatan 3 yaitu 3, 6, 9, 12, 15, 18, 21, dan seterusnya ditambah-tambah 3. Himpunan Bilangan Asli Bilangan asli disebut sebagai himpunan bilangan karena terdefinisi dengan jelas. Himpunan bilangan asli adalah himpunan yang dilambangkan dengan huruf N dengan anggotanya sebagai berikut. $$\displaystyle \mathbb{N} = \{1,2,3,...\}$$ Huruf N ini berasal dari kata bahasa Inggris yaitu "Natural" untuk menyebut bilangan asli dalam bahasa Inggris "natural number". Adapun tanda titik tiga tersebut bermakna "dan seterusnya". Terdapat dua kesepakatan mengenai himpunan bilangan asli. Yaitu apakah 0 juga termasuk himpunan bilangan asli ataukah tidak? Yang pertama definisi menurut matematikawan tradisional, yaitu himpunan bilangan bulat positif yang bukan nol yaitu {1, 2, 3, 4, ...}. Sedangkan yang kedua definisi oleh logikawan dan ilmuwan komputer, adalah himpunan nol dan bilangan bulat positif yaitu {0, 1, 2, 3, ...}. Jadi, menurut studi ilmu komputer, 0 dimasukkan kedalam himpunan bilangan asli natural number. Tapi, karena yang kita bahas di sini adalah definisi bilangan asli dalam matematika maka bilangan asli adalah bilangan yang dimulai dari 1, 2, 3, 4, dan seterusnya. Contoh Himpunan Bilangan Asli Agar kamu bisa lebih mengerti tentang bilangan asli, berikut ini diberikan contoh soal himpunan bilangan asli dan jawabannya. 1. Tentukan himpunan bilangan asli kurang dari 8 Jawab {1, 2, 3, 4, 5, 6, 7} 2. Tentukan himpunan bilangan asli yang kurang dari 6 Jawab {1, 2, 3, 4, 5} 3. Tentukan himpunan bilangan asli yang kurang dari 4 Jawab {1, 2, 3} 4. Tentukan himpunan bilangan asli antara 3 dan 10 Jawab {4, 5, 6, 7, 8, 9} 5. Tentukan himpunan bilangan asli lebih dari 10 Jawab {11, 12, 13, 14, 15, 16, 17, ...} Bilangan Asli Dimulai dari Bilangan Satu Bilangan asli memiliki asal dari kata-kata yang digunakan untuk menghitung benda-benda, dimulai dari bilangan satu bukan 0. Kemajuan besar pertama adalah penggunaan sistem bilangan untuk melambangkan angka-angka. Sebagai contoh, orang-orang Babylonia mengembangkan sistem berbasis posisi untuk angka 1 dan 10. Orang Mesir kuno memiliki sistem bilangan dengan hieroglif berbeda untuk 1, 10, dan semua pangkat 10 sampai pada satu juta. Sebuah ukuran batu dari Karnak, tertanggal sekitar 1500 SM dan sekarang berada di Louvre, Paris, melambangkan 276 sebagai 2 ratusan, 7 puluhan dan 6 satuan; hal yang sama dilakukan untuk angka 4622. Kemajuan besar lainnya adalah pengembangan gagasan angka nol sebagai bilangan dengan lambangnya tersendiri yaitu 0. Nol telah digunakan dalam notasi posisi sedini 700 SM oleh orang-orang Babylon, namun mereka melepaskan bila menjadi lambang terakhir pada bilangan tersebut. Konsep nol pada masa modern berasal dari matematikawan India, Brahmagupta. Pada abad ke-19 dikembangkan definisi bilangan asli menggunakan teori himpunan. Dengan definisi ini, dirasakan lebih mudah memasukkan nol berkorespondensi dengan himpunan kosong sebagai bilangan asli, dan sekarang menjadi konvensi dalam bidang teori himpunan, logika dan ilmu komputer. Matematikawan lain, seperti dalam bidang teori bilangan, bertahan pada tradisi lama dan tetap menjadikan 1 sebagai bilangan asli pertama. Angka Bilangan Asli Simbol N kapital dicetak dua kali, digunakan untuk menunjukkan himpunan semua bilangan asli. Para ahli matematika menggunakan $\displaystyle \mathbb{N}$ atau $\displaystyle \mathbb{N}$ untuk menuliskan himpunan seluruh bilangan asli. Adapun angka lambang bilaangan dari bilangan asli adalah Satu dilambangkan dengan 1 Dua dilambangkan dengan 2 Tiga dilambangkan dengan 3 dan seterusnya. Bilangan asli yang hanya terdiri dari satu angka disebut bilangan satuan. Contoh 9 bilangan asli pertama. Bilangan asli yang terdiri dari dua angka disebut bilangan puluhan. Contoh 23 dibaca "dua puluh tiga". Bilangan asli yang terdiri dari tiga angka disebut bilangan ratusan. Contoh 143 dibaca "seratus empat puluh tiga". Bilangan asli yang terdiri dari empat angka disebut bilangan ribuan. Contoh 4563 dibaca "empat ribu lima ratus enam puluh tiga". Urutan Bilangan Asli Urutan bilangan asli menyatakan sederetan bilangan asli yang disusun dari bilangan terkecil ke yang terbesar atau sebaliknya. Menyatakan urutan bilangan asli dilakukan dengan cara menentukan manakah yang lebih besar atau lebih kecil dari bilangan asli yang diberikan. Jika m dan n bilangan asli, dimana m lebih besar dari n, maka ditulis $m > n$ Jika m lebih kecil dari n, maka ditulis $m < n$ Bilangan asli yang lebih besar akan diletakkan pada bagian kanan daripada bilangan yang lebih kecil. Khususnya jika bilangan asli tersebut digambarkan pada garis bilangan. Contoh urutan bilangan asli 3, 6, 9, 7 dari yang terkecil adalah 3, 6, 7, 9. Himpunan Bilangan Asli Adalah Himpunan Tak Hingga Bilangan asli dimulai dari 1, 2, 3, dan seterusnya. Bilangan asli merupakan himpunan yang tak hingga. Tidak ada akhir dari bilangan asli. Jika kamu bisa menyebubkan suatu bilangan asli M yang sangat besar, maka ada M+1 yang lebih besar. Misalnya M= maka ada yang lebih besar lagi yaitu M+1= Bilangan Asli dan Bilangan Cacah Bilangan cacah berbeda dengan bilangan asli. Bilangan cacah adalah himpunan yang terdiri dari bilangan asli dan nol Bilangan cacah yaitu 0, 1, 2, 3, 4, dan seterusnya. Jika dinyatakan dalam notasi pembentuk himpunan yaitu Bilangan Cacah = {0, 1, 2, 3, 4, ...} Jadi, bilangan cacah merupakan bilangan asli ditambah dengan 0. Letak perbedaan bilangan asli dan bilangan cacah adalah keanggotaan bilangan 0 tersebut yang tidak ada pada bilangan asli. Sebagai contoh, bilangan cacah yang lebih dari 3 dan kurang dari 10 adalah 4, 5, 6, 7, 8, dan 9. Ini sama halnya mencari bilangan asli lebih dari 3 dan kurang dari 10. Bilangan Asli Genap Pengertian dari bilangan asli genap adalah bilangan asli yang dapat dibagi 2. Contoh bilangan asli genap kurang dari 15 adalah 2, 4, 6, 8, 10, 12, dan 14. Bilangan asli genap antara 1 dan 5 yaitu 2 dan 4. Bilangan asli genap adalah himpunan bilangan {2, 4, 6, 8, 10, ...}. Bilangan Asli Ganjil Pengertian dari bilangan asli ganjil adalah bilangan asli yang tidak dapat dibagi 2. Contoh bilangan asli ganjil kurang dari 15 adalah 1, 3, 5, 7, 9, 11, dan 13. Bilangan asli ganjil antara 1 dan 5 yaitu 3. Bilangan asli ganjil adalah himpunan bilangan {1, 3, 5, 7, 9, ...}. Bilangan Asli Kuadrat Bilangan asli kuadrat adalah bilangan yang merupakan hasil dari bilangan yang dipangkatkan 2. Bilangan asli kuadrat adalah sebagai berikut. $1 = 1^2$ $4 = 2^2$ $9 = 3^3$ $16 = 4^4$ $25 = 5^2$ $36 = 6^2$ dan seterusnya untuk $49=7^2$, $64=8^2$, ... Soal Latihan Tentukan bilangan asli yang kurang dari 10 bilangan asli kurang dari 6 bilangan asli kurang dari 7 bilangan asli antara 3 dan 7 himpunan bilangan asli antara 0 dan 7 adalah himpunan 6 bilangan asli yang pertama bilangan asli antara 3 dan 8 bilangan asli yang kurang dari 7 bilangan asli genap antara 1 dan 11 bilangan asli yang kurang dari 20 bilangan asli kelipatan 2 bilangan asli maksimal 6 kuadrat 5 bilangan cacah pertama contoh bilangan komposit adalah bilangan asli antara 1 dan 10 kumpulan bilangan asli antara 4 dan 12 0 adalah bilangan asli atau bukan? himpunan bilangan cacah yang lebih dari 100 bilangan asli antara 2 dan 8 jelaskan pengertian bilangan asli bilangan asli atau bulat positif dapat terbentuk dari bilangan

ylFUWz.
  • 7zkz1209e1.pages.dev/128
  • 7zkz1209e1.pages.dev/438
  • 7zkz1209e1.pages.dev/39
  • 7zkz1209e1.pages.dev/399
  • 7zkz1209e1.pages.dev/293
  • 7zkz1209e1.pages.dev/145
  • 7zkz1209e1.pages.dev/139
  • 7zkz1209e1.pages.dev/126
  • bilangan asli lebih dari 7 dan kurang dari 15